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Preface

The data products from the Stratospheric Aerosol and Gas Experiment I (SAGE I), flown on

the Applications Explorer Mission 2 (AEM-2) satellite, have been archived on magnetic tapes
at tile National Space Sciences Data Center, NASA Goddard Space Flight Center, Greenbelt,

Maryland 20771, and are now available to researchers. The AEM-2 satellite was launched on
February 18, 1979, but because of the failure of the spacecraft power subsystem, the mission was
terminated on November 11, 1981. Over the operational life of the spacecraft, the instrument

collected 33 months of scientific data, including vertical profiles of stratospheric aerosol, ozone,

and nitrogen dioxide. This document is intended to serve as a guide for using these data sets in

scientific investigations of stratospheric chemistry related to aerosol, ozone, nitrogen dioxide,

dynamics, and climate change. There are brief descriptions of the instrument operation; data

collection, processing, and validation; and some descriptions of the scientific analyses that
have been conducted. The SAGE I data products, containing the aerosol extinction data at

1000 and 450 nm, the ozone concentration data, and the nitrogen dioxide concentration data,

are described in detail in appendixes A, B, and C.

Over the years, the SAGE I experiment's development and research have been guided by
the SAGE I Science Team, made up of the folI0w[ng people:

M. P. McCormick, Principal Investigator, NASA Langley Research Center (LaRC); R. Craig,

Florida State University; D. M. Cunnold and G. W. Grams, Georgia Institute of Technology;

B. M. Herman, University of Arizona; M. Hir0no, Kyoto University; D. E. Miller, British

Meteorological Office; D. G. Murcray, University of Denver; T. J. Pepin, University of Wyoming;
W. G. Planet, National Oceanic and Atmospheric Administration National Meteorological

Center; and P. B. Russell, NASA Ames Research Center.

The efforts of the LaRC SAGE I Data Processing Team are also gratefully acknowledged.
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Summary

The Stratospheric Aerosol and Gas Experiment I

(SAGE I) instrument was launched on board the
Applications Explorer Mission-2 (AEM-2) satellite,
which was dedicated to the SAGE I mission. SAGE I

provided global data collection of aerosol vertical ex-

tinction profiles, ozone vertical concentration pro-

files, and nitrogen dioxide vertical concentration pro-
files. The SAGE I instrument was a Sun photometer
that measured the attenuation of solar radiation in

four spectral regions through the Earth's atmosphere

during spacecraft sunrise and sunset. The solar radi-
ance data were combined with spacecraft ephemeris

and National Oceanic and Atmospheric Administra-

tion (NOAA) meteorological data and then numer-
ically inverted to yield altitude profiles of aerosol

extinction at wavelengths of 1000 and 450 nm and

altitude profiles of ozone and nitrogen dioxide con-
centration. The SAGE I aerosol data were validated

by comparison with correlative lidar and dustsonde
in situ measurements, the ozone data were vali-

dated by comparison with balloon electrochemical

cell (ECC) ozonesonde and rocket measurements,
and the nitrogen dioxide measurements were com-

pared with climatology. These data are currently
archived at the National Space Sciences Data Cen-

ter (NSSDC). This publication describes the SAGE I

experiment, instrument characteristics, and mode of

operation; outlines the method of the data inversion;

the Applications Explorer Mission-2 (AEM-2) satel-

lite (McCormick et al. 1979). The SAGE I instru-
ment had four spectral channels centered at wave-

lengths of 1000, 600, 450, and 385 nm for measuring

the atmospheric extinction on account of aerosols,

ozone, and nitrogen dioxide. The AEM-2 satellite

was placed in an orbit of approximately 600 km at
an inclination of 56 ° to extend the latitudinal cov-

erage for the solar occultation measurements from
79 ° S to 79 ° N. The SAGE I instrument collected

data for almost 3 years until the AEM-2 satellite

power subsystem failed. The processed SAGE I data
have been archived at the National Space Sciences

Data Center (NSSDC), NASA Goddard Space Flight

Center, Greenbelt, Maryland 20771.

The most recent of these solar occultation ex-

periments, the Stratospheric Aerosol and Gas Ex-

periment II (SAGE II), uses seven spectral channels

for measuring the atmospheric extinction of aerosols,
ozone, nitrogen dioxide, and water vapor and is in
an orbit similar to that of SAGE I, which allows

data collection at latitudes from 80 ° S to 80 ° N. The

SAGE II instrument was launched October 5, 1984,

aboard the Earth Radiation Budget Satellite (ERBS)

and was still collecting data after more than 7 years

of operation at the time this paper was prepared

(McMaster 1986). As the SAGE II data are pro-

ccsscd and validated, they are also being archived at
the NSSDC.

and explains to potential users the format of the data

products archived at NSSDC. Results of the data val-
idation and examples of data products arc also pre-

sented to demonstrate the quality of the data and

some of its applications in atmospheric studies.

Introduction

SAGE I was the second in a series of satellite

experiments using the solar occultation technique to
monitor and study stratospheric trace constituents.

The Stratospheric Aerosol Measurement It (SAM II),

the first automatic instrument to use this technique

from space, was launched October 24, 1978, on the

Nimbus 7 spacecraft (McCormick et al. 1979). The
SAM II instrument uses a single spectral channel

centered at a wavelength of 1000 nm for monitoring

stratospheric aerosols. Because of the Nimbus 7's

Sun-synchronous orbit, SAM II collects stratospheric

aerosol data exclusively in the two polar regions at

latitudes extending from 64 ° to 80 ° N and from
64 ° to 80 ° S. At the time this paper was prepared,

SAM II was still operational and in its 13th year of
data collection.

The Stratospheric Aerosol and Gas Experiment I

(SAGE I) was launched February 18, 1979, aboard

AEM-2 SAGE I Mission

The scientific objective of SAGE I was to develop

a global stratospheric aerosol, ozone, and nitrogen
dioxide data base that could be used for the investi-

gation of the spatial and temporal variations of these

species caused by seasonal and short-term meteoro-
logical variations, atmospheric chemistry and nficro-

physics, and transient phenomena such as volcanic

eruptions. The data base could also be used for the

study of trends, atmospheric dynamics and trans-
port, and potential climatic effects. The SAGE I sen-

sor was designed to measure the attenuation of solar

radiation resulting from atmospheric aerosol, ozone,
and nitrogen dioxide at four spectral regions through

the Earth's atmosphere during each spacecraft sun-

rise and sunset (fig. 1). The SAGE I sensor was a
dedicated instrument on the AEM-2 satellite which,

had its orbit tailored to maximize geographic cover-

age for solar occultation sampling. The AEM-2 satel-
lite, with its orbital altitude of approximately 600 km

and angle of inclination of 56 °, provided 15 sunrise
and 15 sunset measurements each day, with succes-

sive sunrise or sunset measurements occurring about

25 ° of longitude apart. The latitude of the sunrise or



sunsetmeasurementsvariedslowlyfromdayto day
andprovidednear-globalcoverageevery3to4weeks.
Astheseasonschanged,themaximumlatitudeof the
SAGEI measurcmcntsrangedfrom79° Sto 79° N.
Figure2showsthelatitudinalcoverageoftheSAGEI
missionoverthe33monthsof instrumentoperation.
Becauseof thespacecraftpowersubsystemproblems
that reducedthepowercapacityof its batteries,sun-
risemeasurementsfrom SAGEI wereterminated
afterAugust1979.

SUN "-_

Figure 1. Solar occultation measurement geometry.

Instrument Description and Operation

The SAGE I instrument was a four-channel Sun

photometer that used a Cassegrainian telescope,

holographic grating, and four silicon photodiodes to

define the four-spectral-channel bandpass. Figure 3
is a schematic of the SAGE I instrument. Solar ra-

diation was reflected off a scan mirror into the tele-

scope, with an image of the Sun being formed at the

focal plane. The instrument's instantaneous field of

view, defined by the aperture on the focal plane, was
a 30-arcsec circle that produced a vertical resolution

at the tangent point of about 0.5 kin. Radiation pass-

ing through the aperture was transferred to the spec-
trometer section of the instrument which contained

the holographic grating and four separate detector

systems. The holographic grating dispersed the in-

coming radiation into the four spectral regions cen-

tered at wavelengths of 1000, 600, 450, and 385 nm.
Slits on the Rowland circle of the grating defined

the spectral bandpass of the four spectral channels.

The bandpasses were 50, 30, 20, and 30 nm, respec-

tively, for the above-mentioned wavelengths. The en-

tire imaging and spectrometer system was inside the
azimuth gimbal to allow the instrument to be pointed

at the Sun without image rotation. The azimuth gim-
hal could be rotated over 360 ° so that measurements

could be made at any azimuthal angle.
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Figure 2. Latitudinal coverage for SAGE I measurements.
Pluses indicate sunrise measurements and diamonds in-

dicate sunset measurements.
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Figure 3. Schematic of SAGE I instrument. (From
McCormick et al. 1979.)

The operation of the instrument, during each sun-

rise and sunset measurement, was totally automatic.
Prior to each sunrise or sunset, the instrument was

rotated in azimuth to its predicted solar acquisition

position. When the Sun entered the instrument's

field of view, the instrument adjusted its azimuth po-
sition to lock onto the radiometric center of the Sun

to within 4-45 arcsec and then acquired the Sun by

rotating its scan mirror to the proper elevation an-

gle. As the Sun traversed between the horizon and
the tangent height of 150 km, the elevation mirror

scanned vertically across the solar disk. (See fig. 4.)

The two solid lines in the figure represent 'the top

and bottom edges of the solar disk during a sunset

event. The gradual shrinking of the vertical shape of
the solar image at the lower altitudes was caused by

increasing atmospheric refraction. The dashed line

represents the relative motion of the instrument ele-
vation mirror as it scanned the Sun at a nominal rate

of 15 aremin/see. The radiometrie channel data were
sampled at a rate of 64 samples per second per chan-

nel, digitized to 12-bit resolution, and recorded for
later transmission back to Earth. Additional SAGE I

instrument information can be found in McCormick

et al. (1979).
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Figure 4. Typical SAGE I elevation scanning of solar disk for
a sunset measurement event.

Data Processing

The SAGE I measurement data were pro-

cessed with the algorithm developed by Chu and

McCormick (1979) and its updated revision as dis-

cussed by Chu et al. (1989). In this section, a brief

outline of the SAGE I algorithm is presented.

The measured radiance from the SAGE I instru-

ment can be related to the atmospheric optical prop-
erties with the Lambert-Beer relation:

H A (t) = / F (0, ¢) S (0, ¢, t) exp[-% (0)] df_ (1)

where

F(0,¢)

s(o, ¢, t)

Ta(o)

f_

measured radiance at time t for

channel wavelength )_

instrumental field-of-view function

extraterrestrial solar radiance

profile within the SAGE I spectral
bandwidth at time t corrected for

atmospheric refraction effects

optical thickness of atmosphere for

elevation angle 0 and wavelength ,k

azimuthal angle

total solid angle

Each elevation angle 0 corresponds uniquely to an
atmospheric tangent height ht, the optical thickness

%(0) can be related to atmospheric extinction prop-
erties through the following equation:

_a (ht) = f [/_ (h) + Zoa (h) + Zxo_ (h) + Z_y (h)] ap (2)

profile of aerosol extinction versus
altitude



_Oa(h) profileof ozoneextinctionversus
altitude

flNO2 (h) profile of nitrogen dioxide extinction
versus altitude

/?Ray (h) profile of Rayleigh extinction versus
altitude

dp differential path length through
atmosphere

The integral is evaluated from the spacecraft position
to the Sun.

The processing of the SAGE I data to generate

the various species profiles was done in three steps.
First, the measured radiance data were reduced with

the spacecraft ephemeris, atmospheric refraction cal-

culation, and the Sun-scan data and put into profiles

of limb optical thickness %(ht) as a function of tan-

gent height ht in the atmosphere for each channel
centered at wavelength A. The high-altitude solar-

scan profiles for each channel were used as calibrated

solar-limb profiles out of thc atmosphere.

Thc second step was to subtract the estimated

Rayleigh contribution along each limb path for each
channel and to separate the four spectral optical

thickness profiles into aerosol optical thickness pro-

files at 1000 and 450 nm, an ozone optical thick-

ncss profile at 600 nm, and a nitrogen dioxide op-
tical thickness profile at 385 nm with the mcthod

described by Chu and McCormick (1979) and Chu

et al. (1989). The Rayleigh contributions were com-
puted from coincident temperature versus height pro-
files that were provided by the National Oceanic and

Atmospheric Administration (NOAA).

The third step was to invert the species' optical

thickness profiles into extinction profiles. Through
division of the atmosphere into N homogeneous lay-

ers, the integral equation can be reduced to a system

of linear equations as follows:

N

Tai = _ Pij_qaj

J

(3)

where

rai measured limb optical thickness at ith layer

for species

Pij path length of the Sun's ray in jth layer
with its tangent height at ith layer

/3aj averaged extinction coefficient for species a
in jth layer

4

Equation (3) is then inverted with Twomey's modifi-

cation of Chahine's nonlinear relaxation algorithm

as described by Chu and McCormick (1979) and

Chu et al. (1989). The SAGE I inversion algo-
rithm generated vertical aerosol extinction profiles

at 1000 and 450 nm and ozone and nitrogen dioxide

vertical concentration profiles.

An example of the SAGE I aerosol data inversion

is shown in figure 5. The aerosol extinction profiles
of 1000 nm that are shown are from SAGE I radiance

data collected April 24, 1979, at 0545 and 0722 LCT.
They illustrate the background aerosol condition ver-

sus the presence of volcanic plume from the eruption

of Soufri_re volcano (McCormick et al. 1982). The

error bars shown in the figures are estimates of the
random errors associated with the calculations of the

aerosol extinction that result from both the radio-
metric measurement and the mathematical inversion.

These errors (also archived at NSSDC along with the

constituent profiles) include contributions from ran-
dom measurement and inversion noise, NOAA tem-

perature uncertainties, and altitude uncertainties.
Below an altitude of 25 km, where aerosol extinction

exceeds molecular extinction by 50 percent, the total
error in the retrieved aerosol extinction coefficient is

typically less than 10 percent. Therefore, even under
most background or nonvolcanic conditions, the ex-

tinction resulting from stratospheric aerosols can be

measured to accuracies within 10 percent.

An example of the SAGE I ozone data inver-

sion is shown in figure 6. The dashed-line profile

of ozone partial pressure is from SAGE I radiance
data Collected on April 2, 1979. It illustrates a typ-

ical mid-latitude springtime ozone profile. The pro-

file shown by the solid line in the figure is a coin-

cident electrochemical cell (ECC) ozonesonde pro-
file obtained at Garmisch-Partenkirchen, Germany

(Reiter and McCormick 1982). The error bars asso-
ciated with the SAGE I ozone profile are estimates
of the random errors from the calculation of the ozone

concentration profile. These errors are estimated

similar to the errors in the aerosol extinction pro-

files. Generally, the uncertainties of the ozone con-
centration profiles retrieved from the SAGE I mea-

surements are less than 10 percent from cloud-top

height to a geometric altitude of about 45 kin.

An example of the SAGE I nitrogen dioxide data
inversion with the 385-nm channel is shown in fig-

ure 7. (See also WMO 1981.) Chu and McCormick

(1986) suggested that measurement noise and diffi-
cuhies associated with removing the Rayleigh, ozone,
and aerosol contributions from this single wavelength

retrieval led to an accuracy of approximately 20 per-

cent, as shown by the error bars. The effect of the
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Figure 5. SAGE I aerosol extinction profile on April 24, 1979.
Horizontal bars indicate lcr error bar. (From McCormick
et al. 1982.)

inhomogeneous distribution of nitrogen dioxide re-

sulting from its diurnal variation along the slant tan-

gent path has been neglected in the retrieval of ni-
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Figure 6. SAGE I measured ozone profile and coincident ECC
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ozonesonde data starting at 1645 GMT; SAGE I mea-
surements at 1743 GMT. (Prom Relter and McCormick
1982.) Horizontal bars indicate l_r error bar.
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Figure 7. SAGE I sunset nitrogen dioxide data and previous
measurements of nitrogen dioxide as shown in WMO
(1981). Horizontal bars indicate la error bar. (Prom Chu
and McCormick 1986.)

analyzed by Kerr, Evans, and McConnell (1977) and
the correction factors were found to be small. The

SAGE II instrument uses two channels with rela-

tively narrow bandwidths to make the nitrogen diox-

ide measurement, and this retrieval results in a signif-

icant improvement in the profile accuracy from that

trogen dioxide vertical profiles. This effect has been experiment (Cunnold et al. 1991).
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SAGE I data were originally processed and
archived at NSSDC in 1985, with corrections to

NOAA temperature data at upper pressure levels as

tabulated by Geller, Wu, and Gelman (1983). How-
ever, the tabulated correction factors were later de-

termined to have sign errors (Gelman et al. 1986).

The effects on the original SAGE I results were most

pronounced in low-latitude-high-altitude regions. As
part of the activities of the NASA V_rorld Meteo-

rological Organization (V_%IO) Ozone Trends Panel

in 1987 (Watson et al. 1988), SAGE I data were

reprocessed with the corrected temperature adjust-
ment factors. This user's guide describes the revised

SAGE I data set that has replaced the old SAGE I
data set at NSSDC.

Data Validation

Before being archived, the SAGE I data were vali-

dated through an extensive correlative measurements

program. Two major correlative measurement exper-
iments were conducted the first over Natal, Brazil,

in April 1979, and the second over Poker Flat Re-
search Range, Alaska, in July 1979. In each exper-

iment, correlative aerosol and ozone measurements

were made nearly coincident in space and time with
the SAGE I measurements. The correlative aerosol

data consisted of SAM II-measured aerosol extinction

profiles, airborne lidar-measured aerosol backscatter

data, balloon-borne optical particle counter (dust-

sonde) data, and other in situ particle counter mea-
surements. These correlative aerosol measurements

were collected and converted to aerosol extinctions

for comparison with SAGE I aerosol data (Russell,
McCormick, et al. 198i; Russell, Swissler et al. 1981;

Russell et al. 1984). The correlative ozone data con-
sisted of ECC ozonesondes measurements and rocket

ozone data (McCormick et al. 1984). Figure 8 shows

the aerosol data from the Poker Flat experiment,
along with the SAGE I, the SAM II, the dustsonde

(DS), filter, and the Ames Wire Impactor (AWI)
data (Russell et al. 1984). Other comparisons of
the SAGE I and SAM II aerosol extinction mea-

surements have also been made (Yue, McCormick,

and Chu 1984). Figure 9 shows the SAGE I ozone
measurements and the ECC ozonesonde and rocket

measurements at Poker Flat and Wallops Island,

Virginia (McCormick et al. i989). Comparisons
of the SAGE I ozone data with other ECC data

have also been made (Reiter and McCormick 1982).

Because of the unavailability of any generally ac-
cepted nitrogen dioxide monitor, the SAGE I nitro-

gen dioxide measurements were compared with avail-

able climatology as well as noncoincident balloon

6

soundings and ground-based measurements (Chu and
McCormick 1986).

These comparisons between SAGE I aerosol,

ozone, and nitrogen dioxide measurements and cor-
relative data demonstrate that the SAGE I measure-

ments agree with the correlative data to within their
measurement and conversion uncertainties. These

results clearly support the validity of the SAGE I

aerosol, ozone, and nitrogen dioxide data.

Data Products

The basic archived products from the SAGE I

data processing are the aerosol profile tape, the

ozone profile tape, and the nitrogen dioxide pro-
file tape. These data products are arehived and

can be requested on magnetic tape from the Na-

tional Space Sciences Data Center (NSSDC), NASA
Goddard Space Flight Center, Code 933, Green-

belt, Maryland 20771. (Foreign requests should be

sent to Code 930.2.) Each request should specify
the experiment data desired (aerosol, ozone, or ni-

trogen dioxide), the NSSDC identification number
(79-013A-01C), and the time period of interest. All
33 months of SAGE I data have been archived.

The aerosol profile tape contains the altitude

profiles (plus the corresponding error estimates) of
aerosol extinction coefficients at wavelengths of 1000

and 450 nm, Rayleigh extinction coefficients at wave-

lengths of 1000 and 450 nm, and the extinction ratio
of aerosol extinction coefficient to Rayleigh extinc-

tion coefficient at a wavelength of 1000 nm. Auxiliary

information that was used for processing the SAGE I
data, such as NOAA's temperature-versus-altitude

data, ephemeris-calculated latitude and longitude at

the tangent location, beta angle of the spacecraft or-

bit (angle between the spacecraft orbit plane and the

Earth-Sun direction), and event duration, is also in-
cluded on the profile tape. There is one aerosol profile

tape per year that covers 12 months of data from De-

cember of 1 year to November of the next year (winter

to fall). The tapes are formatted as 6250-bpi, 9-track
tapes and are archivcd at NSSDC. The aerosol profile

tape record format is described in appendix A.

The ozone profile tapes contain the sunrise and

sunset altitude profiles of ozone number density and

mixing ratio, plus their corresponding error esti-

mates. They contain the same auxiliary information
as the aerosol profile tapes. There is one ozone pro-

file tape per year that covers 12 months of data from

December of 1 year to November of the next year.
The tapes are formatted as 6250-bpi, 9-track tapes

and are arehived at NSSDC. The ozone profile tape
format is described in appendix B.
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The nitrogen dioxide profile tapes contain SAGE I

nitrogen dioxide data in the same format as the ozone

profile tapes. Similarly, there is one nitrogen dioxide
data tape per year that covers 12 months of data from

Dccember of 1 year to November of the next year.

The nitrogen dioxide profile tape format is dcseribed

in appendix C.

Appendixes A, B, and C refer to tile meteorologi-
cal data notes of appendix D to cxplain the meteoro-

logical fields supplied by the National McteorologicM
Center in the data records of the tapes. Appendix D

also explains how the meteorological data were

handled by the SAGE I processing team.

Scientific Studies

The SAGE I data have been used to perform a va-

riety of atmospheric studies of atmospheric chemistry

and dynamics, history of volcanic perturbation, and
ozone and nitrogen dioxide long-term trends. The

following discussion briefly describes some results of

these investigations that used the SAGE I aerosol,
ozone, and nitrogen dioxide data.

SAGE I aerosol data provided the first global de-

scription of volcanic perturbation of the stratospheric

dust layer during the 33 months that SAGE I was in

operation (Kent and McCormick 1984). Figure 10

shows the temporal variation of the optical depth

of global stratospheric aerosols from 1979 to 1981,
based on the combined SAGE I and SAM II aerosol

measurements. It shows the effects of stratospheric

aerosol loading resulting from the different volcanic

injections on both the Northern Hemisphere and
the Southern Hemisphere. The two wavelengths
of aerosol extinction coefficients obtained from the

SAGE I measurements have been used to estimate

the stratospheric aerosol size information, spatial

distribution, and temporal evolution (Lenoble and
Pruvost 1983; Yue and Dcepak 1983; Yue and

Deepak 1984).

The primary goal of the SAGE I mission was

to monitor stratospheric trace species. However,
the SAGE I instrument did make measurements in

the troposphere at the cloud-free regions. Stud-

ies of the aerosols in the free troposphere, as mea-

sured by SAGE I, have been performed to research

seasonal variability (Kent et al. 1988). Also, the
SAGE I tropospheric data can be used to gener-

ate a high-altitude cloud climatology (Woodbury and

McCormick 1986). Figure 11 illustrates a global map

that was developed by the SAGE I data which shows

tile frequency of occurrence of the high-altitude
clouds.

SAGE I aerosol, ozone, and nitrogen dioxide data

have also been used for studies of atmospheric dy-

namics. For example, high-latitudc aerosol, ozone,

and nitrogen dioxide data have been used to study
stratospheric sudden warming phenomena (Wang

and McCormick 1985; Chu and McCormick 1986).

SAGE I ozone data have been used to study the lat-
itudinal transport in the atmosphere caused by wave

activities (Wang, McCormick, and Chu 1983).
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Figure 10. Temporal variation of optical depth of mean hemispheric stratospheric aerosols based on combined SAGE I and SAM II
measurements from 1979 to 1981. Mass loading conversion factor = 1.10 x 103 m2 kg-1. (From Kent and McCormick 1984.)
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Figure 11. Average frequency of cirrus cloud occurrence during full 33 months of SAGE I operation. (From Woodbury and
McCormick 1986.)

SAGE I ozone and nitrogen dioxide data have also

been used to study atmospheric chemistry anoma-
lies related to nitrogen dioxide photochemistry (Chu

and McCormick 1986) and ozone chemistry (Wangl

McCormick, and Chu 1983).

The SAGE I ozone data have been compared with
SAGE II ozone data to determine the global ozone

trends from 1979 to late 1980 (Watson et al. 1988;

McCormick, Veiga, and Zawodny 1989). It was this
comparison between SAGE I and SAGE II ozone

data that demonstrated stratospheric ozone at 50 km

did not decrease significantly over the period stud-

ied contrary to the trend results based on other
satellite observations (Herman, Hudson, and Ser-

afino 1990; Chandra et al. 1990). The SAGE I and

Concluding Remarks

This report has described the Stratospheric Aero-

sol and Gas Experiment I (SAGE I) instrument;
its data collection, processing, and validation tech-

niques; and the aerosol, ozone, and nitrogen diox-

ide archival products used in scientific investigations
of various atmospheric sciences. These data prod-

ucts are archived and can be requested on magnetic

tape from the National Space Sciences Data Cen-

ter (NSSDC), NASA Goddard Space Flight Cen-
ter, Code 933, Greenbelt, Maryland 20771. All
33 months of SAGE I data have been archived.

SAGE II ozone data have been regarded as the most NASA Langley Research Center
accurate ozone profile data measured from space- _Hampton, VA 23681-0001

(WMO 1990). May 28, 1992



Appendix A
SAGE I Aerosol Profile Record Format

Record Format

CYBERa

w'ords

(60-bit) Size Field content description
40-km reference data

0001

0002

0003

OO04

OO05

0006

0007
0008

Event Date (yymmdd.0)

Event Time (hhmmss.0)

Subtangent Latitude (0.0 ° + 90.0 °)

Subtangent Longitude (0.0 ° 4- 180.0 °)

Spacecraft-Referenced Event Type (0.0 = Sunrise; 1.0 = Sunset)

Earth-Referenced Event Type (0.0 = Sunrise; 1.0 = Sunset)

Spacecraft Beta Angle (0.0 ° + 61.0 °)
Coded Time of Year (ddd.fract)

NMC meteorological data (see appendix D)

0009 0033
0034 0058

0059-0083

0084 0108

0109 0133
0134

0135

0136

0137
0138

0139

0140

0141

25

r
1

Temperature, K
Temperature Error, K

Geometric Altitude, m

Air Density, g/m 3

Air Density Error, percent
Temperature Correction Value for 5.0-mbar Level, K

Temperature Correction Value for 2.0-mbar Level, K

Temperature Correction Value for 1.0-mbar Level, K

Temperature Correction Value for 0.4-mbar Level, K

"Meteorological Data Not Complete" Flag (0 = Complete; 1 - Incomplete)

"Start of Model Meteorological Data" Array Index Pointer (1 19)

Model Meteorological Data Selection Code (ssll)
Revision Date of LaRC Meteorological Model (yymmdd.0)

NASA LaRC processing information

0142
0143

0144

0145

0146

0147

0148

0149

LaRC

LaRC

LaRC

LaRC
LaRC

Driver Revision Level

Transmission Revision Level

Inversion Revision Level

Event Tag (yymmddhhmm.sq)

Processing Date (yymmdd.0)

LaRC Processing Time (hhmmss.0)

Mean Subtangent Altitude for Event Limb Calibration, km

Value Designated as the Data Fill Number for this Event

Event ground-track slew data

Subtangent Altitude, km

Corresponding Latitude (0.0 ° ± 90.0 °)

Corresponding Longitude (0.0 ° 4- 180.0 °)
Time Span of Data from Levels 1 to 70, sec

Altitude and meteorological data for profile arrays

Geometric Altitude, km

Corresponding Pressure, mbar

Corresponding Temperature, K

0150 0157 8

0158 0165 8

0166 0173 8
0174 1

0175 0244 70
0245-0314 70

0315 0384 70

0385-0390 6 Spare

aTradernark of Control Data Corporation.
bData field notes given after table.
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CYBER a
words

(60-bit) Size Field content description

Quality estimations of channel optical depth profile

Note

(b)

0391

0392

0393

0394

0395

0396
0397

1000-nm-Wavelength Quality Factor

Spare

Spare

Spare
450-nm-Wavclength Quality Factor

Spare
Spare

0398-0400 3 Spare

Rayleigh extinction profiles

6O0401 O460

0461-0520

0521-0580

0581-0640

0641 O7OO

0701 O76O

0761-0820

0821-0880

0881 0940

0941 1000

1001 1060

1061-1120

1121-1180

1181-1240

1241-1300

1301-1360

1361-1420

1421-1480

6O

1000-nm Rayleigh Extinction, km -1

1000-nm Rayleigh Extinction Error, km -1

Spare

Spare

450-nm Rayleigh Extinction, km -1

450-nm Rayleigh Extinction Error, km -1

Spare

Spare

Aerosol profiles

1000-nm Extinction, km -1

1000-nm Extinction Error, km -1

Spare

Spare

450-nm Extinction, km -1

450-nm Extinction, km-1

Spare

Spare
1000-nm Extinction Ratio
1000-nm Extinction Ratio Error

1481-1488 8 Spare
End of event record

aTrm:temark of Control Data Corporation.
bData field notes given after table.
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Record Format Notes

General notes:

• Each field of the event record contains one 60-bit CYBER a floating point number.

• All time and data references are to GMT, except fields 146 and 147, which are LaRC processing time.

• All latitudes and longitudes are given at the event subtangent point.

• If any field in the event record is considered invalid, or has missing data, a fill value will be placed

in that field. For each event record, that fill value can be found in field 149. (See data field note 7

below.)

• Each profile level bin is centered at the 0.5-km point within a range of 1.0 km.

Data field notes:

12

1. Thc "yymmdd.0" and "hhmmss.0" fields are generated by the respective FORTRAN statements:

DATE = FLOAT (IYY*10000 + IMM*100 + IDD)

TIME = FLOAT (IHH*10000 + IMM*100 + ISS)

2. Spacecraft-Referenced Event Type and Earth-Referenced Event Type fields are normally the same

type, but if the absolute value of the spacecraft beta angle is close to 61 °, their values may bc opposite.

The Earth-Referenced Event Type field is based on a ground-observer's viewpoint.

3. The Spacecraft Beta Angle fieht is defined as the angle generated by the intersection of the Earth-Sun

vector and the spacecraft orbit plane.

4. The Coded Time of Year field is the time at the beginning of the event (not the same time as for

fields 1 and 2) and is generated by the FORTRAN statement:

CODTIME = FLOAT(DOY) + (SOD/86400.0)

whcrc

DOY = Day of year (1-366)
SOD = Seconds of tile day (0.0 86399.99...)

5. The LaRC Event Tag field is generated with statcments similar to those in note 1. Tile ".sq" at thc

end of tile value is the event number of the day divided by 100.

6. The Mean Subtangent Altitude for Event Limb Calibration field contains the altitude at which data

for the exoatmospheric solar image were gathered for use in solar limb normalization for the event.

7. The Value Designated as the Data Fill Number for This Event field must be used to determine what

data in the event record are valid. If any field other than this one contains this number, that field has

no valid information and should not be used by the investigator.

8. The Quality Factor fields for each wavelength are equal to 1.0 minus the summation of the optical

depth errors at each profile level from 20.5 to 59.5 kin. In cases where a 40-km span cannot be realized,

the quality factor is proportioned to a 40-km span to allow a better comparison across wavelengths
and other events.

9. Extinction ratio = (Aerosol extinction + Rayleigh extinction)/Raylcigh extinction.

aTrademark of Controi Data Corporation.



Appendix B
SAGE I Ozone Profile Record Format

Record Format

CYBERa
words

(60-bit) Size Field content description

40-km reference data

0001

0002

0003

0004

0005

0006

0007
0008

Event Date (yymmdd.0)

Event Time (hhmmss.0)
Subtangent Latitude (0.0 ° 4- 90.0 °)

Subtangent Longitude (0.0 ° 4- 180.0 °)

Spacecraft-Referenced Event Type (0.0 = Sunrise; 1.0 = Sunset)

Earth-Referenced Event Type (0.0 = Sunrise; 1.0 = Sunset)

Spacecraft Beta Angle (0.0 ° 4- 61.0 °)

Coded Time of Year (ddd.fract)
NMC meteorological data (scc appendix D)

0009 0033

0034-0058

0059 0083

OO84 0108

0109-0133

0134

0135

0136

0137
0138

0139

0140

0141

25

i
l
1

Temperature, K

Temperature Error, K

Geometric Altitude, m

Air Density, g/m 3

Air Density Error, percent
Temperature Correction Value for 5.0-mbar Level, K

Temperature Correction Value for 2.0-mbar Level, K

Temperature Correction Value for 1.0-mbar Level, K

Temperature Correction Value for 0.4-mbar Level, K
"Meteorological Data Not Complete" Flag (0 = Complete; 1 = Incomplete)

"Start of Model Meteorological Data" Array Index Pointer (1-19)

Model Meteorological Data Selection Code (ssll)

Revision Date of LaRC Meteorological Model (yymmdd.0)

NASA LaRC processing information

0142

0143

0144

0145
0146

0147

0148

0149

LaRC Driver Revision Level

LaRC Transmission Revision Level

LaRC Inversion Revision Level

LaRC Event Tag (yymmddhhmm.sq)

LaRC Processing Date (yymmdd.0)

LaRC Processing Time (hhmmss.0)

Mean Subtangent Altitude for Event Limb Calibration, km
Value Designated as the Data Fill Number for this Event

Event ground-track slew data

Subtangent Altitude, km
Corresponding Latitude (0.0 ° + 90.0 °)

Corresponding Longitude (0.0 ° 4- 180.0 °)

Time Span of Data from Levels 1 to 70, sec

Altitude and meteorological data for profile arrays

Geometric Altitude, km

Corresponding Pressure, mbar

Corresponding Temperature, K

0150-0157 8

0158 0165 8

0166 0173 8
0174 1

0175 0244 70

O245 0314 70
0315 0384 70

0385-0390 6 Spare

aTrademark of Control Data Corporation.
bData field notes given after table.

Note

(b)

13



CYBERa
words Note
(60-bit) Size Fieldcontentdescription (b)

Qualityestimationsof channelopticaldepthprofile
10391

0392
0393
0394
0395
0396
0397

Spare
Spare
600-nm-WavelengthQualityFactor
Spare
Spare
Spare
Spare

03980400 3 Spare [
Ozoneprofiles

0401-0470
0471-O540
0541-0610
0611-O680
06810688

70 NumberDensity,molecules/cm_
NumberDensityError,molecules/cm3
VolumetricMixingRatio,v/v
VolumetricMixingRatioError,v/v
Spare

Endof eventrecord

aTrademark of Control Data Corporation.

bData field notes given after table.
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Record Format Notes

General notes:

• Each field of the event record contains one 60-bit CYBER a floating point number.

• All time and data references are to GMT, except fields 146 and 147, which are LaRC processing time.

• All latitudes and longitudes are given at the event subtangent point.

• If any field in the event record is considered invalid: or has missing data, a fill value will be placed

in that field. For each event record, that fill value can bc found in field 149. (See data field note 7

below.)

• Each profile level bin is centered at the 0.5-kin point within a range of 1.0 kin.

Data field notes:

1. The "yymmdd.0" and "hhmmss.0" fields are generated by the respective FORTRAN statements:

DATE = FLOAT (IYY*10000 + IMM*100 + IDD)

TIME = FLOAT (IHH*10000 + IMM*100 + ISS)

2. Spacecraft-Referenced Event Type and Earth-Referenced Event Type fields are normally the same

type, but if the absolute value of the spacecraft beta angle is close to 61 °, their values may be opposite.

The Earth-Referenced Event Type field is based on a ground-observer's viewpoint.

3. The Spacecraft Beta Angle field is defined as the angle generated by the intersection of the Earth-Sun

vector and the spacecraft orbit plane.

4. The Coded Time of Year field is the time at the beginning of the event (not the same time as for

fields 1 and 2) and is generated by the FORTRAN statement:

CODTIME = FLOAT(DOY) + (SOD/86400.0)

where

DOY = Day of year (1 366)
SOD = Seconds of the day (0.0-86399.99...)

5. The LaRC Event Tag field is generated with statements similar to those in note 1. The ".sq" at the

end of the value is the event number of the day divided by 100.

6. The Mean Subtangent Altitude for Event Limb Calibration field contains the altitude at which data

for the exoatmospheric solar image were gathered for use in solar limb normalization for the event.

7. The Value Designated as the Data Fill Number for This Event field must be used to determine what

data in the event record are valid. If any field other than this one contains this number, that field has

no valid information and should not be used by tile investigator.

8. The Quality Factor fields for each wavelength are equal to 1.0 minus the summation of the optical

depth errors at each profile level from 20.5 to 59.5 km. In cases where a 40-km span cannot be realized,

the quality factor is proportioned to a 40-km span to allow a better comparison across wavelengths

and other events.

aTrademark of Control Data Corporation.
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Appendix C

SAGE I Nitrogen Dioxide Profile Record Format
Record Format

CYBERa

words

(60-bit)

0001

0002
0003

0004

0005

0006

0007

0008

Size Field content description
40-km reference data

0009 0033

0034 0058

0059 0083

0084 0108

0109 0133

0134

0135

0136
0137

0138

0139

0140

0141

Event Date (yymmdd.0)

Event Time (hhmmss.0)
Subtangent Latitude (0.0 ° i 90.0 °)

Subtangent Longitude (0.0 ° + 180.0 °)

Spacecraft-Referenced Event Type (0.0 = Sunrise; 1.0 = Sunset)

Earth-Referenced Event Type (0.0 = Sunrise; 1.0 =Sunsct)

Spacecraft Beta Angle (0.0 ° 4- 61.0 °)

Coded Time of Year (ddd.fract)

NMC meteorological data (see appendix D)

0142

0143

0144

0145

0146

0147
0148

0149

25

F
1
1

Temperature, K

Temperature Error, K

Geometric Altitude, m

Air Density, g/m 3

Air Density Error, percent

Temperature Correction Value for 5.0-mbar Level, K
Temperature Correction Value for 2.0-mbar Level, K

Temperature Correction Value for 1.0-mbar Lcvel, K

Temperature Correction Value for 0.4-mbar Level, K

"Meteorological Data Not Complete" Flag (0 = Complete; 1 = Incomplete)

"Start of Model Meteorological Data" Array Index Pointer (1 19)

Model Meteorological Data Selection Code (ssll)

Revision Date of LaRC Meteorological Model (yymmdd.0)

NASA LaRC processing information

0150 0157

0158 0165
0166-0173

0174

0175 0244

0245-0314

0315 0384

0385-0390

LaRC Driver Revision Level

LaRC Transmission Revision Level
LaRC Inversion Revision Level

LaRC Event Tag (yymmddhhmm.sq)

LaRC Processing Date (yymmdd.0)
LaRC Processing Time (hhmmss.0)

Mcan Subtangent Altitude for Event Limb Calibration, km

Value Designated as the Data Fill Number for this Event

Event ground-track slew data

16

Subtangent Altitude, km
Corresponding latitude (0.0 ° + 90.0 °)

Corresponding Longitude (0.0 ° 4- 180.0 °)

Time Span of Data from Levels 1 to 70, sec

Altitude and meteorological data for profile arrays
70

70

70

Geometric Altitude, km

Corresponding Pressure, mbar

Corresponding Temperature, K

6 Spare

aTrademark of Control Data Corporation.
bData field notes given after table.

Notc

(b)

2

2

3

4



CYBERa
words Note

(60-bit) Size Field content description (b)

Quality estimations of channel optical depth profile
10391

0392

0393

0394
0395

0396
0397

0398-0400 3 Spare

Spare

Spare

Spare

Spare

450-nm-%¥:avelength Quality Factor

Spare

385-nm-Wavelength Quality Factor

8

8

Nitrogen dio×idc profiles

0401-0460

0461 0520

0521--0580

0581-0640

60 Number Density, molecules/cm :t

Number Density Error, molecules/cm 3

Volumetric Mixing Ratio, v/v
Volumetric Mixing Ratio Error, v/v

End of event record

aTrademark of Control Data Corporation.
bData field notes given after table.
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Record Format Notes

Generalnotes:

• Eachfieldof theeventrecordcontainsone60-bitCYBER a floating point number.

• All time and data references are to GMT, except fields 146 and 147, which are LaRC processing time.

• All latitudes and longitudes are given at the event subtangent point.

• If any field in the event record is considered invalid, or has missing data, a fill value will be placed

in that field. For each event record, that fill value can be found in field 149. (See data field note 7

below.)

• Each profile level bin is centered at the 0.5-km point within a range of 1.0 km.

Data field notes:

1. The "yymmdd.0" and "hhmmss.0" fields arc generated by the respective FORTRAN statements:

DATE = FLOAT (IYY*10000 + IMM*100 + IDD)

TIME = FLOAT (IHH*10000 + IMM*100 + ISS)

2. Spacecraft-Referenced Event Type and Earth-Referenced Event Type fields are normally the same

type, but if the absolute value of the spacecraft beta angle is close to 61 ° , their values may be opposite.

The Earth-Referenced Event Type field is based on a ground-observer's viewpoint.

3. The Spacecraft Beta Angle field is defined as the angle generated by the intersection of the Earth-Sun

vector and the spacecraft orbit plane.

4. The Coded Time of Year field is the time at the beginning of the event (not the same time as for

fields 1 and 2) and is generated by the FORTRAN statement:

CODTIME = FLOAT(DOY) + (SOD/86400.0)

where

DOY = Day of year (1 366)
SOD = Seconds of tile clay (0.0 86399.99...)

5. The LaRC Event Tag field is generated with statements similar to those in note 1. The ".sq" at the

end of the value is the event number of the day divided by 100.

6. The Mean Subtangent Altitude for Event Limb Calibration field contains the altitude at which data

for the exoatmospheric solar image were gathered for use in solar limb normalization for the event.

7. The Value Designated as the Data Fill Number for This Event field must be used to determine what

data in the event record are valid. If any field other than this one contains this number, that field has

no valid information and should not be used by the investigator.

8. The Quality Factor fields for each wavelength are equal to 1.0 minus the summation of the optical

depth errors at each profile level from 20.5 to 59.5 kin. In cases where a 40-kin span cannot bc realized,

the quality factor is proportioned to a 40-km span to allow a better comparison across wavelengths

and other events.

aTrademark of Control Data Corporation.
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Appendix D

Meteorological Data Notes

Meteorologicaldataaresuppliedto NASALangleyResearchCenter(LaRC)by NOAANationalWeather
Service,ClimateAnalysisBranch,Washington,D.C. Data for temperature,temperatureerror,geometric
altitude,air density,andair densityerrorareprovidedfor 18pressurelevels(1000to 0.4mbar)andfor the
derivedtropopausepressure.Thepressurelevels(inmbar)correspondto the 25-elementmeteorologicaldata
arrays(1to 25)asfollows:1000,850,700,500,400,300,250,200,150,100,70, 50, 30, 10, 5, 2, 1, 0.4, 0.04, 0.01,

spare, spare, spare, spare, and derived tropopause pressure. Elements 19 and 20 (0.04 and 0.01 mbar) contain

LaRC model data for temperature and altitude only. Elements 21 to 24 (spares) contain fill values, and

element 25 contains the NOAA-supplied tropopause information.

If NOAA cannot supply meteorological data as above, LaRC determines the highest pressure level for which

data are supplied and then inserts model data from the next level up to the lowest pressure level of 0.01 mbar.

Only temperature and altitude information are supplied from using these model data. Temperature error,

density, and density error will be filled for the corresponding levels that contain the LaRC-supplied data.

Meteorological correction factors for temperatures at 5, 2, 1, and 0.4 mbar are already added to the value

of the temperatures in elements 15 through 18 of the temperature array. These correction factors are only

included in the NOAA-supplied data. If model data are in these locations, no correction factors are applied.

The correction factors are listed in fields 134 to 137 of the record.

Meteorological data (fields 245 to 384 of the event record) are interpolated from the meteorological data in
fields 9 to 133 of the record. Altitude data in fields 175 to 244 increment by 1 km with the center of each level

at the 0.5-km point of the level bin.

Other meteorological data information is contained in the following record locations:

Field 0138:0 if NOAA-supplied data are complete, 1 if incomplete.

Field 0139: the model pointer is the array index that points to the start of LaRC-supplied model data in

the temperature and altitude arrays of the meteorological data.

Field 0140: model selection code (ssll) where ss is from 01 to 04 for spring to winter, and ll is from 0 to 80

in 10-deg increments for absolute latitude.

Field 0141: date of revision of the LaRC-supplied model.
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